질병관리청 국립보건연구원은 인공지능(AI)을 활용해 줄글 형태로 작성된 관상동맥조영술 검사 기록을 표준화 데이터로 자동 변환하는 기술을 개발했다고 17일 밝혔다. 연세대학교 의과대학과 국민건강보험 일산병원 공동 연구팀은 국립보건연구원의 지원을 받아 수행한 연구에서 거대언어 모델을 활용해 의료진이 작성한 검사 기록을 구조화한 데이터로 바꾸는 데 성공했다. 심혈관질환 진단·치료에 핵심적 정보를 담고 있는 관상동맥조영술 보고서는 대부분 비정형적인 방식으로 서술돼 대규모 연구·정책 분석에 활용하기는 어려웠다. 또한 기존에는 심장내과 전문의가 방대한 기록을 직접 읽고 필요한 정보를 수작업으로 정리해야 하는 한계가 있었다. 이번 연구에서 연구진은 챗GPT, 제미나이 등 거대 언어모델을 활용한 자동 구조화 기술을 개발했다. 1단계에서는 거대 언어모델을 활용해 줄글 형태의 보고서를 심장내과 전문의가 설계한 표준화한 구조로 변환하고, 2단계에서는 구조화된 데이터를 기반으로 핵심 임상지표 12가지를 자동으로 추출했다. 이 과정을 거쳐 관상동맥조영술 보고서는 즉시 분석이 가능한 표 형태의 데이터로 자동 정리되는 것이다. 자동 구조화된 데이터의 정확도는 주요 항목에서 96∼99%
휴대용 칼륨 측정기 [세브란스병원 제공] 휴대용 칼륨 측정기로도 기존 대형 장비만큼 정확하게 칼륨 수치를 얻어낼 수 있다는 연구 결과가 나왔다. 27일 세브란스병원에 따르면 이 병원 신장내과 박철호, 유태현 교수 연구팀은 손가락 끝에서 얻은 피 한 방울로 혈중 칼륨 농도를 1분 안에 측정하는 휴대용 자가 측정기의 정확성을 입증했다. 혈중 칼륨 농도가 정상보다 높은 상태를 뜻하는 고칼륨혈증은 만성콩팥병 환자에게 치명적인 부정맥과 심정지를 유발할 수 있어 꾸준히 상태를 살펴야 한다. 지금까지는 환자가 병원을 방문해 뽑은 정맥혈을 대형 장비로 분석해야만 할 수 있었기에 측정에 긴 시간이 걸렸다. 연구팀은 손가락 끝을 살짝 찔러 나온 소량의 모세혈을 일회용 검사지에 떨어뜨려 수십 초 안에 칼륨 수치를 측정하는 검사기기를 연구에 활용했다. 이 기기는 아직 상용화하지 않은 것으로, 연구팀은 혈당측정기와 비슷한 이 기기를 말기콩팥병으로 혈액 투석을 받는 환자 40명을 대상으로 유효성을 확인했다. 그 결과, 손끝 모세혈에서 얻은 칼륨 수치는 병원의 대형 장비로 측정한 정맥혈 수치와 거의 동일했다. 여러 차례 반복 측정했을 때도 기존 방식과의 오차가 5% 미만으로 유지됐다.
에디슨상 수상한 이진형 스탠퍼드대 교수 이진형 미국 스탠퍼드대 교수가 설립한 인공지능(AI) 뇌 진단 플랫폼이 '혁신의 오스카'로 불리는 에디슨상 수상작으로 선정됐다. 에디슨상 심사위원회는 이 교수가 설립한 스타트업 엘비스(LVIS)의 '뉴로매치'가 올해 에디슨상 건강·의료·생명공학 부문 'AI 증강진단' 영역의 수상 최종 후보로 선정됐다고 25일(현지시간) 밝혔다. 에디슨상은 영역별로 셋을 뽑는 최종 후보작에 오르면 사실상 수상이 확정된다. 후보작들은 최종 심사를 거쳐 금·은·동메달을 각각 수상하게 된다. 뉴로매치는 클라우드 기반 AI 의료 소프트웨어 플랫폼으로, 뇌파(EEG) 검사 데이터를 AI가 자동으로 분석해 잡음을 제거하고 이상 신호를 감지하는 기술이다. 지금까지는 뇌파를 측정한 이후 의사들이 수 시간씩 검토해야 했지만, 뉴로매치를 이용하면 불과 몇 분 만에 결과를 볼 수 있는 등 정확도와 효율성을 높였다. 특히 검사 결과를 뇌와 같은 형태로 재구성해 3차원(3D)으로 시각화하는 '디지털 트윈'(가상모형) 기술이 핵심이다. 이 제품은 미 식품의약국(FDA)에서 세 차례에 걸쳐 승인받았고, 한국 식약처 인증도 완료했다. 미 캘리포니아주 팰로앨토 소재